
Automatic Notation Generators
G. Douglas Barrett

State University of New York
at Buffalo

Department of Music
311 Baird Hall

Buffalo, NY 14260-4700
(617) 372-0737

gbarrett@buffalo.edu

Michael Winter
University of California,

 Santa Barbara
Media Arts and Technology

Santa Barbara, CA 93106-6065
(434) 295-4113

mwinter@sonicism.net

Harris Wulfson
Graduate Center of City University of

New York
Department of Music

365 Fifth Ave.
New York, NY 10016

(661) 373-5611

harris@wulfson.com

Abstract
This article presents various custom software tools called
Automatic Notation Generators (ANG’s) developed by the
authors to aid in the creation of algorithmic instrumental
compositions. The unique possibilities afforded by ANG software
are described, along with relevant examples of their compositional
output. These avenues of exploration include: mappings of
spectral data directly into notated music, the creation of software
transcribers that enable users to generate multiple realizations of
algorithmic compositions, and new types of spontaneous
performance with live generated screen-based music notation. The
authors present their existing software tools along with
suggestions for future research and artistic inquiry.

Keywords
Automatic Notation, Algorithmic Music, Real-time Notation
Generation, Spectral Analysis, Graphic Notation, Interactive
Music, Interactive Composition

1. Introduction to Automatic Notation
Generators

Automatic Notation Generators (ANG's) are computer
applications that generate notated music based on mappings of
data onto specific notation systems. The authors intend to show
that ANG’s can enable new modes of compositional thinking and
facilitate experimentation with notation systems.

The authors began work on notation generators independently
until creating a forum dedicated to the topic of ANG’s. Since
then, the development of more specialized ANG’s has continued,
culminating in evolving software systems and the creation of The
Society for Automatic Music Notators (SAMN), which convened
in New York City for the first time in the fall of 2006.

To illustrate the functionality of ANG’s, recent software by the
authors will be described along with examples of their use. These
include ANG’s that transcribe spectral data as in the work of
G. Douglas Barrett, ANG’s for algorithmic compositions by
Michael Winter, and Harris Wulfson’s live real-time ANG’s for
screen-based notation. Ultimately, with these examples we hope
to illustrate a music making process wherein the notation software
is an integral part of the composition.

2. Spectmore: Automatic Notation
Generation for Spectral Transcription
Processes

2.1 Introduction
This section introduces a newly developed software tool designed
to automatically produce instrumental scores based upon spectral
analysis and re-synthesis processes using sound-file input. The
original software, Spectmore, and its various components will be
described and an initial musical work produced using the software
will be presented. Overall, this project has drawn significantly
upon ideas and insight gained from previous projects (specifically,
see Barrett, 2006) and is much indebted to the work of a key set of
composers: the large-ensemble works of the Itineraire Spectral
composers, along with many works of Peter Ablinger, and the
algorithmic music of James Tenney. In addition to providing an
overview of the program's general functionality, an attempt will
be made to illustrate the value of the ANG in its ability to provide
a user with rapid feedback and fast prototyping when composing
music using algorithms and spectral analysis.

An interest, which grew from experimental works produced with
Spectmore's predecessor, Spectore, was the use of environmental
field recordings of extended duration, along with an exploration of
their spectral properties. Peter Ablinger's Quadraturen series, in
part, is similarly concerned with creating instrumental pieces from
spectral analyses from a variety of sources, including field
recordings. Central to some of these works is the use of
polyphonic instrumental textures that can be considered analogous
to the original recorded material with respect to certain
morphological properties. With these interests in mind, a central
goal of the Spectmore project has been to create a working
environment in which various configurations of spectral analysis,
algorithmic composition, and automatic notation generation could
be rapidly and flexibly configured.

2.2 Spectral Orchestration
Spectral orchestration is the term given to the assignment of an
instrumental tone with somewhat analogous properties –
frequency to pitch, amplitude to dynamic – for each significant
partial found in a spectral analysis of a recorded sound file. A
partial is defined as significant when it passes tests for its
duration, pitch, and amplitude. This process creates a collection of
partials that shares structural properties with the original recorded
material. Significant partials are assigned to instruments (Figure
2.3) based upon a complex set of time-variant and static criteria
(see Section 2.4.2, Statistical Orchestration).

2.3 Notation
Notation in Spectmore is handled by a specialized Python module
(mxml.py), which contains certain musical and notational
functionality to facilitate quick mapping schemes of input data.
This module, uses as its eventual output format the widely
accepted Music XML standard (Recordare, 2003). The module is
constructed hierarchically as illustrated in Figure 2.2: a Note
belongs to a Measure, which belongs to a Part, which belongs to
the entire Orchestra. As differentiated from the Note object, the
Plank describes a single tone that may span several measures and
is attached directly to the Part object.

2.4 Functionality
2.4.1 Spectral Analysis
Spectmore uses as its analysis engine Loris, the open-source
software package, which implements the reassigned bandwidth-
enhanced additive sound model. Loris provides a set of time-
variant amplitude and frequency envelopes with initial phase
values and noise energy (Fitz, et al, 2003). After obtaining a list of
partials from a Loris analysis instance, the Spectmore analysis
module performs a thinning function, which removes partials
below user-specified amplitude and duration thresholds (Figure
2.3). Then, the changes in frequency throughout the duration of
each partial are averaged to provide single frequency values. A
similar averaging process is performed for amplitude. This
collection of partials, to be referred to as a spectral separation, is
then arranged in order of decreasing amplitude throughout time.
This ordering gives more prominent partials priority when the
spectral separation is handed to the Statistical Orchestration
module.

2.4.2 Statistical Orchestration
For each partial contained within a spectral separation, an
instrument is chosen from a previously defined collection,
contained within the Orchestra object, based upon a system of
statistical weightings (Figure 2.4). These weightings are specified
by user-defined criteria such as fixed instrumental properties and
time-variant states of the instrumental texture. Each of the
following static weightings relate to instrumental properties and
can be more or less emphasized by a user-defined factor (0-9): the
choir weight, a weighting based simply upon the choir to which
the instrument belongs (i.e. strings, woodwinds, brass,
percussion), and the range weight, the partial's relative distance
from a 'sweet-spot' chosen for each instrument (default, the
middle of the instrument's range). Time-variant weightings
include functions relating to voice-leading and the control of
overall density. A distance in semi-tones from the last note of
each instrument determines the voice-leading weight while the
duration from each instrument's last note is used to control
density.

Figure 2.1 Spectral Orchestration.

Figure 2.2 Internal structure of Notation Module (mxml.py).

2.5 Music
Derivation V. for the S.E.M Ensemble is the first piece created
using Spectmore and received its first performance on February
15, 2007 in Brooklyn, New York. The piece uses as its source
material a recording of a busy street corner, Hollywood and Vine,
located in Hollywood, California. The piece lasts approximately
eleven minutes and consists of an instrumental texture, which
moves from extremely sparse to moderately dense. Due to a
concentration in low-frequency spectral energy, an ensemble of
instruments with strong lower registers was chosen. While an
adjustment could have easily “corrected” or equalized the spectral
distribution, this unusual concentration of low-registral material
seemed to bear an interesting relationship to similar observations
made concerning the city soundscape (most notably, see
Increased Bass Response in Music and the Soundscape, Schafer,
1977).

2.6 Conclusion
Spectmore provides a robust interface for algorithmic spectral
composition. This ANG facilitates the kind of rapid prototyping
and flexibility integral to working with experimental
configurations of algorithmic music, transcription, and spectral

analysis. Two areas that Spectmore leaves open for further
development are user-interface design and general interactivity.
The following sections address these issues among others.

3. ANG’s for Algorithmic Compositions
3.1 Introduction
One exciting characteristic of ANG’s is the ability to conceive of
musical works as abstract structures with multiple realizations.
Each ANG presented in this section allows users to create
multiple realizations of one piece that is generated by an
algorithm with stochastic and user defined-variables. The software
also illustrates the kind of rapid prototyping employed in
Spectmore with the added functionality of a graphical user
interface. The corresponding works for these ANG’s, nothing… I
and sort 1, are compositions in which the structure and form of
the piece are constant, but variable parameters such as
instrumentation and tone information (pitch, duration, and
amplitude) only become fixed when a realization of the score is
generated for a particular performance. The compositional
methods in these pieces draw from the considerable amount of
work that has been done in algorithmic composition within the
past few decades (Polansky, 1996; Ames, 2005 and 2006;
Xenakis, 1971) and recent developments in ANG technologies.
Nick Didkovsky’s JMSL and JScore create an elegant link
between an algorithm and its subsequent transcription into music
notation (Didkovsky, 1997 – 2007).

To realize scores for nothing… I and sort 1, a modular framework
has been implemented in Java (with some objects from the JMSL
API). Each of the ANG’s for these pieces share this framework
(Figure 3.1) and share similar user-interfaces. Significantly, each
also creates output using its own unique notation system. The
ability to define individualized graphic environments for each
ANG has afforded the composer the opportunity to create a
notation system best suited for each piece.

Figure 3.1 ANG Modular Paradigm.

Figure 2.3 Illustration of Partial Thinning.

Figure 2.4 Spectmore: General Program Overview.

3.2 nothing… I
3.2.1 The Algorithm
nothing… I is stochastically generated by an algorithm that
defines limits for tone parameters such as pitch, amplitude, and
duration. Temporal densities vary throughout the piece based on
register. Figure 3.2 is a visualization that represents the changes in
temporal density. Within the graph, the x-axis represents time and
the y-axis represents pitch. Darker areas indicate louder and
shorter tones while lighter areas indicate softer, longer tones.
Completely white areas not bounded by lines indicate no sound at
all. Proceeding from time-zero to the end of the piece, pitches are
chosen randomly from an available pitch-range that changes over
time. Then a third value is calculated based on the current time
and the chosen pitch. From this third value, center points are
derived for the range of possible durations and amplitudes. Then,
time (the x-value) is incremented by the duration and the process
is repeated.

Figure 3.2 nothing… I Graph.

3.2.2 Orchestration
As in Spectmore, tones are assigned to instruments by statistical
means. Since instrumentation is variable, orchestration is
determined by factors of similarity and dissimilarity (Tenney,
1961) in timbre between groups of instruments that are user-
defined as opposed to composer prescribed. In nothing… I, these
groups are entered by the user in the instrument frame as “type”
along with other attributes such as playable range (Figure 3.3).
For example, type 1, type 2, and type 3 may be strings/brass,
winds/brass, and strings/voices, respectively. The program first
checks to see if any instruments of the preferred type are
available, i.e. whether a given pitch is within the instrument’s
playable range and whether the instrument is already sounding a
tone. If no instrument of the preferred type is found, the
orchestration module checks the rest of the instruments in the
user-defined ensemble. If no instruments are available, the tone is
discarded.

Figure 3.3 nothing… I Instrument Frame.

3.2.3 Transcription and Notation
After the tone information is generated and assigned to different
instruments, there is a transcription module that renders the data
into notation. The unique characteristics of the notation for
nothing… I include proportional notation, cent-deviations above
the notated pitches, and amplitude contours of tones represented
in beams. In order to preserve the proportional notation, auxiliary
information that does not fit between notes is placed above the
note to which it applies. A fragment of the score is shown in
Figure 3.4.

Figure 3.4 nothing… I Score Fragment.

3.3 sort 1
3.3.1 The Process
In sort 1, a set of pitches is iterated through several times. In the
first iteration, the entire set is out of order. In each successive
iteration, the set is rearranged; by the final iteration, the set is in
descending order of pitch. The rearrangements are actually
worked out in reverse by starting the set in descending order and
moving the pitches to random positions until the set is completely
scrambled. This is done such that the number of iterations is equal
to the size of the set divided by the number of pitches to be moved
per iteration.

3.3.2 More on User-Interfaces
The user can define any set, enter it in the Scale Frame (Figure
3.5), and then assign scale indices to different instruments. The
piece can be rendered multiple times and each rendering can be
formatted, saved, and printed (Figure 3.6). The program also
includes a playback engine that allows the user to play a
synthesized realization of the piece. This playback can be used as
an accompaniment to acoustic instruments or just for audition.

Figure 3.5 sort 1 Scale

Frame.

Figure 3.6 sort 1 Tool Frame.

3.4 Projected Development Ideas
With each new ANG, additions are being developed. For example,
in the ANG for Rise I from 4 Ascents for James Tenney, the user
can select notes on the screen and change their properties in order
to format the score. This piece also uses a new, unconventional
notation system (Figure 3.7).

Figure 3.7 Rise I Score Frame and Note Properties Interface.

The development of a different ANG for every piece can be
extremely time consuming. Hopefully, this work will lead to an
ANG development kit that combines features already existing in
separate environments. Some of these features may include:

• An algorithmic programming environment (such as
JMSL).

• A transcriber that supports traditional notation as well as
newer notational devices such as proportional notation
schemes.

• A robust graphics environment so that the transcriber
outputs a user-defined notation system.

• A synthesis engine for playback.
• A GUI development package.
• A means to bundle the generated software.

Such a multifaceted environment should allow composers to more
easily create ANG’s such as the ones for nothing… I and sort 1.
They would provide more efficient feedback on compositional
ideas and afford composers more time to generate pieces instead
of writing computer code and engraving.

The ANG’s presented in this section are critical to the
compositions by allowing multiple realizations to be rendered.
The interactivity takes place before a performance resulting in a
fixed score (or several different fixed scores if the piece is
rendered many times). The following section addresses an ANG
that facilitates dynamic, mutable realizations of a piece by
streaming notation in real time.

4. LiveScore: Real Time Generated Music
Notation

4.1 Introduction
Real time algorithmic processes have been used in electro-
acoustic music for some time now, and composers have a host of
tools (notably Cycling '74's Max/MSP and the open source
SuperCollider and PureData environments) available for realizing
those processes in sound. The LiveScore project began by posing
the question: could live generated music be performed by human
musicians on acoustic instruments? This idea raised a host of

other questions: How would musical information be conveyed to
the musicians? Should the musicians be synchronized with each
other, and how would that be accomplished? The resulting
LiveScore piece provides a working example of live generated
instrumental music. This section will outline the LiveScore
system and touch briefly on findings from the first performances.

4.2 Technical Information
The LiveScore software consists of a client program for notation
display and a separate server program that generates the musical
material. The client is written in Objective-C and uses the Cocoa
frameworks for Macintosh OS X. The server is written in the
SuperCollider language. The client and server machines are
networked wirelessly and communicate with each other using the
Open Sound Control protocol developed at the University of
California at Berkeley.

The client and server function together as a notation broadcast
system. Music information is created on the server, orchestrated
on the fly, and parts are displayed note by note on the performers'
laptop screens. Each performer has her own client machine from
which she reads the resulting notation.

4.3 Note Streams
A proportional notation system was chosen, in which horizontal
space represents time. This approach is used for several reasons.
First, it allows the full range of time to be notated. One of the
unique attributes of the system is that it enables multiple
musicians to read proportional notation in a coordinated fashion,
which is something that is difficult or impossible to achieve with a
static printed score. In addition, the proportional notation allows
the server to treat notes as events in time without having to map
them into meters with measures and beats. The client can display
a stream of notes immediately as they are generated on the server.
A standard 5-line staff is used, showing as many systems as will
fit on the client screen. Each note is given a trailing beam that
indicates the note's duration. For extremely short durations, the
stem and beam are omitted. In addition to note information, the
client can also display dynamics and arbitrary text instructions.

Figure 4.1 Fragment from LiveScore.

Any process may be used to generate the musical material. The
real-time nature of the system allows for the incorporation of live
data feeds such as environmental data, sensor input, or other kinds
of controls.

4.4 Synchronization
Coordination between the musicians is accomplished by means of
a conductor bar superimposed over the staff and displayed as a
vertical line that moves from left to right, indicating the current
time in relation to the part. Therefore, when the bar passes over a
notehead, the performer is to start playing the indicated pitch and

sustain it until the conductor bar clears the end of the duration
beam. The presence of the conductor bar creates a performance
situation somewhat akin to certain pieces by John Cage in which
musicians coordinate using stopwatches rather than watching a
conductor or each other for cues. Musicians operate as
independent entities, but their individual contributions are
coordinated by the algorithm. This technique also enables a
completely new kind of performance in which musicians are able
to play complex rhythms together without the need for any sense
of pulse or meter, though both may be implicitly present.

The conductor bar trails the notes by some amount of time
specified for the piece, so the musicians can look ahead in the part
and see what is coming up. The length of this lag determines the
extent to which the process is “real-time.” A short lag results in a
performance that follows the note stream very closely and in
practice, three to five seconds was adequate to enable the
musicians to sight read their parts.

Figure 4.2 LiveScore at the Calarts Integrated

Media Show, May 2006.

4.5 Performance Setting
The first performance of LiveScore was developed as an audience
participatory performance at the Machine Project gallery in Los
Angeles as part of the You, Too, Can Play Difficult Music series.
The audience was invited to play with the knobs on a MIDI
controller, while a quartet of musicians performed the resulting
screen-based notation. Since this was a gallery and not a stage, the
audience participants were able to walk around the space, view
the notation, and “play” the MIDI knob controller. The situation
created an informal atmosphere that encouraged exploration.

The actual musical content was generated by a simple stochastic
algorithm whose bounds were determined by the knob positions.
The server kept track of a few chance determined pitch
collections, which were then selected at random and voiced for
the ensemble, taking into account each instrument's range. The
knobs were given whimsical labels, intended to encourage
experimentation. These included “sparseness” – the amount of
time allotted for a particular pitch set to sound, “pitchiness” – the
size of the pitch collections, “stasis” – the number of available
pitch collections, and “togetherness” – the size of the time
window in which attacks could occur, and so on.

The resulting collaboration between audience, composer,
machine, and musicians yielded some intriguing results. Although
the process was simple, it afforded a rich variety of textures.
Some of the participants who had a turn at the knobs were able to

infuse the musical fabric with a sense of personal style. The
performers remarked afterwards that that was a key point of
interest in playing the piece.

4.6 Directions
The LiveScore system need not be limited to this one piece, and
hopefully it will be applied to other generative processes and other
performance goals. In addition, the scope of screen-based notation
is potentially very large, and some of the concepts from
LiveScore – the networked environment, the conductor function,
the controller input – could be adapted to many kinds of notation
and many styles of music.

5. Automatic Notation Generators:
Conclusion

The preceding examples have shown various implementations of
ANG’s that use different input and incorporate different kinds of
music notation including standard notation with MusicXML,
unconventional composer-designed notations, and real time
screen-based notation. We believe that they point to a use of
notation software as an integral part of a composition. ANG’s can
drastically accelerate the iterative process of auditioning musical
and notational ideas. They enable composers to create pieces with
infinite possible realizations and foster the notion that creating
music is an experimental process.

6. References
[1] Ablinger, Peter (2006) Peter Ablinger – Quadraturen URL:

http://ablinger.mur.at/docu11.html
[2] Ames, Charles. “Thresholds of Confidence: An Analysis of

Statistical Methods for Composition, Part 1: Theory.”
Leonardo Music Journal, Vol 5. (1995): 33-38.

[3] Ames, Charles. “Thresholds of Confidence: An Analysis of
Statistical Methods for Composition, Part 2: Applications.”
Leonardo Music Journal, Vol 6. (1996): 21-26.

[4] Barrett, G. Douglas. (2006) Spectore. URL:
http://synthia.caset.buffalo.edu/~gbarrett/spectore.pdf

[5] Fitz, K., Haken, L., Lefvert, S., Champion and O’Donnell,
M. (2003). “Cell-utes and Flutter-Tongued Cats: Sound
Morphing Using Loris and the Reassigned Bandwidth-
Enhanced Model.” Computer Music Journal 27(4): 44-65.

[6] JMSL and JScore. Nick Didkovsky (1997 – 2007). URL:
http://www.algomusic.com/jmsl

[7] Polansky, Larry. “Morphological Metrics.” Journal for New
Music Research, Vol. 25 (1996): 289-368.

[8] Recordare, 2003, MusicXML Definition, Recordare LLC,
California, USA. URL:
http://www.musicxml.com/about.html

[9] Schafer, R. Murray. The Tuning of the World. New York:
Alfred A. Knopf, 1977.

[10] Tenney, James. Meta + Hodos. Lebanon, NH: Frog Peak
Music, 1961.

[11] Winter, Michael. nothing… I, sort 1, and all referenced work
(2006). URL: http://www.sonicism.net/selected_works.html

[12] Xenakis, Iannis. Formalized Music. Hillsdale, NY:
Pendragon Press, 1971.

